

Il ciclo integrato delle zeolititi come soluzione al problema dell'inquinamento da nitrati e per il risparmio idrico in agricoltura

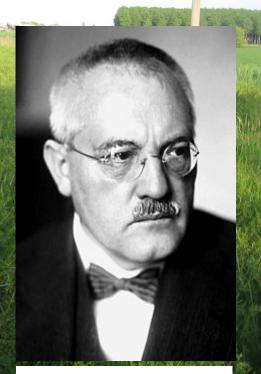
Massimo Coltorti

Dipartimento di Fisica e Scienze della Terra - UniFE

Workshop

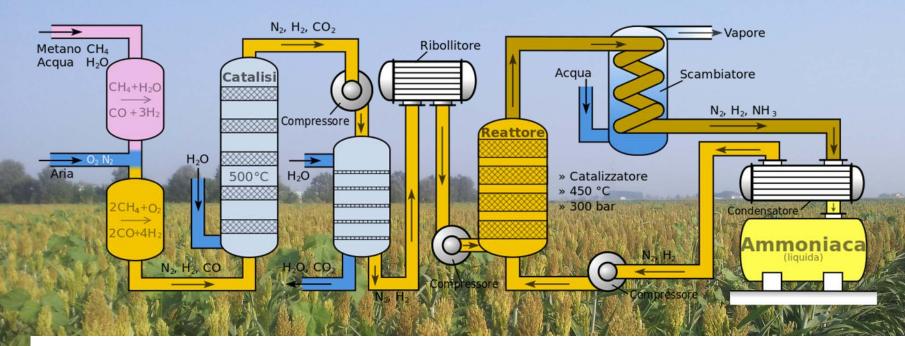
«Best practice per la gestione delle risorse idriche e la tutela dell'ambiente marino: il contributo dei progetti LIFE»

Padiglione Expo Venezia


20/10/2015

La sintesi dell'ammoniaca

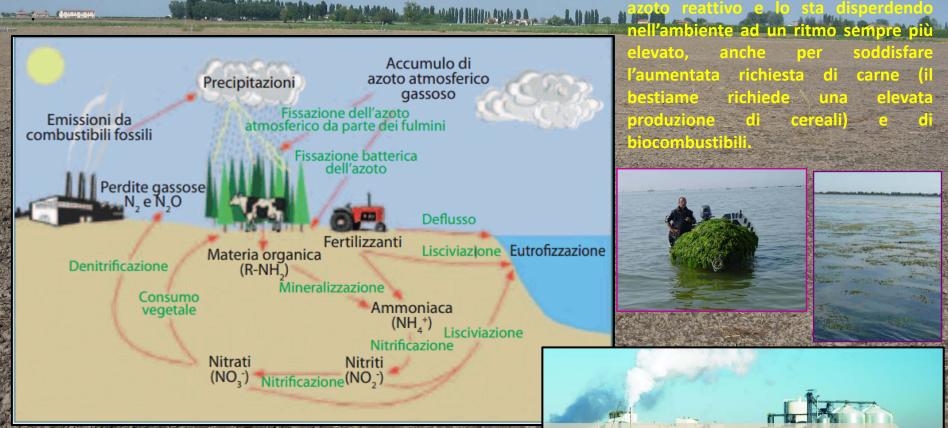
Nel 1909 il chimico tedesco Fritz Haber trovò un modo per trasformare l'azoto gassoso – abbondante in atmosfera ma non reattivo ed inutilizzabile dalla maggior parte degli esseri viventi – in *ammoniaca*, componente fondamentale dei fertilizzanti. Vent'anni dopo il chimico Carl Bosch sviluppò un metodo per sfruttare l'idea di Haber su scala industriale.



Fritz Haber Nobel Chimica 1931 Alcuni ritengono che questa scoperta sia stata più importante di quella dell'aeroplano, dell'energia nucleare, dei voli spaziali o della televisione

Carl Bosch Nobel Chimica 1931

Il processo Haber-Bosch



Il processo avviene «semplicemente» ad alta T e P partendo da Idrogeno e Azoto e usando Ferro come catalizzatore

Però

La maggior parte dell'azoto reattivo dei fertilizzanti non finisce nel cibo, ma viene disperso nell'atmosfera, nei fiumi e negli oceani. Esso si combina in una serie di composti (NO_3^-, N_2^-, N_2^-) , NO_x^- , responsabili di eutrofizzazione, formazione di zone morte, effetto serra. L'eccesso di azoto nell'ambiente ha un ruolo fondamentale anche nella perdita di biodiversità e nell'aumento dell'incidenza di molte malattie.

((Il potenziale di riscaldamento globale (GWP) del metano e del protossido d'azoto è rispettivamente 25 volte e 298 volte più elevato di quello del diossido di carbonio.)

(Fonte: Gruppo intergovernativo sul cambiamento climatico (IPCC), 2007 [6])

...Tutto questo è sostenibile?

GLI OBIETTIVI DEL PROGETTO ZeoLIFE

- 1) Ridurre la quantità di fertilizzanti chimici usati in agricoltura
- 2) Ridurre la quantità di acqua usata per irrigare
- 3) Proteggere le acque superficiali e di falda dall'inquinamento da nitrati derivati dall'agricoltura intensiva
- 4) Ridurre il carico azotato che viene trasportato nelle lagune del Delta
- 5) Ridurre l'impatto ambientale dei reflui da allevamenti intensivi
- 6) Migliorare le caratteristiche pedologiche e sedimentologiche dei suoli siltoso-argillosi
- 7) Contrastare i fenomeni di desertificazione, mantenendo una disponibilità d'acqua nel suolo anche in periodi siccitosi

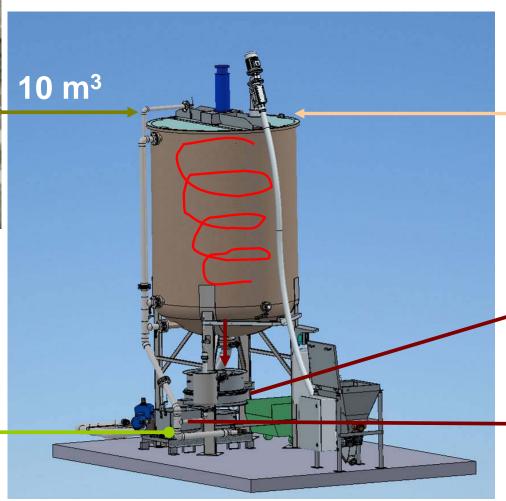
L'IDEA

Raggiungere gli obiettivi del progetto è stato possibile sfruttando le proprietà di un particolare minerale, la zeolite Cabasite, contenuto in percentuali molto elevate (>60%) in tufi derivati dall'attività dei vulcani dell'Italia Centrale (area dei Vulsini in particolare) che per questo vengono chiamati Zeolititi.

La **Zeolitite**, disponibile in natura tal quale, contiene già elevate percentuale di K e H₂O nel suo reticolo cristallino e viene "arricchita" di azoto tramite mescolamento con liquame di suini.

La **Zeolitite** caricata è stata poi aggiunta al terreno e arato per una più omogenea distribuzione nel suolo ad una profondità ottimale per l'interazione con le radici delle piante.

In questo modo la **Zeolitite** rilascerà il suo carico di azoto e di acqua solo nel momento in cui la pianta lo richiederà, costituendo così un serbatoio a lento rilascio che consentirà una crescita ottimale della coltivazione.



Dal processo Haber-Bosch al prototipo ZeoLIFE.....

Zeolitite < 3mm

Prove di serra

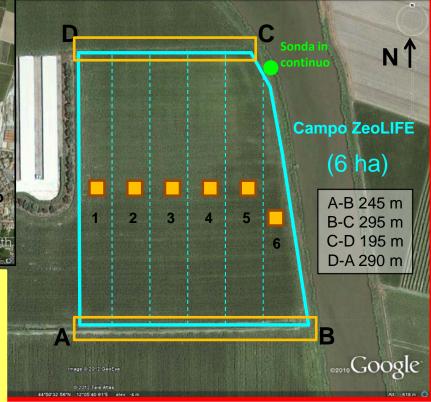
Trattamento / Variabile	Controllo (C)	T1	T2	Т3	T4	Т5	Т6
Substrato	ST	ST	ST	ST	ST	TdC	ST
Zeoliti: quantità/kg (g s.s./kg)	nessuna	10 g/kg (5 kg/m2) CARICATE	10 g/kg (5 kg/m2) CARICATE	10 g/kg (5 kg/m2 CARICATE *	10 g/kg (5 kg/m2) NON CARICATE	10 g/kg (5 kg/m2) caricate (da ciclo 1, senza ulteriori aggiunte)	6 g/kg (3 kg/m2) CARICATE
Azoto aggiunto	Fertilizz completa (100 %)	Fertilizz 70%	Fertilizz 50%	Fertilizz 30%	Fertilizz 70%	Fertilizz 50%	Fertilizz a compensazion e 240 kg/ha (2.5 %)

• 50-150 ton/ha

Dose

Riduzione fertilizzante

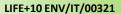
- 30% per zeolitite naturale
- 50% per zeolitite arricchita in NH₄


Campo sperimentale Allevamento suini **PROTOTIPO** odigoro

Stazione meteorologica

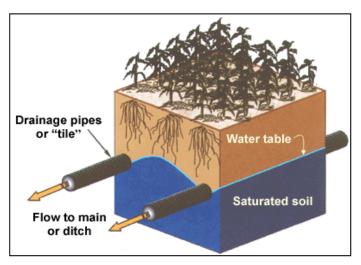
Sistema di captazione dell'acqua superficiale in uscita dal campo

Il campo sperimentale



Sono stati realizzati diversi carotaggi di suolo, con profondità variabile da 280 a 480 cm, più 4 campioni di fango delle scoline adiacenti.

Ogni carota è suddivisa in vari segmenti di lunghezza variabile da 20 a 50 cm, a seconda dell'omogeneità del campione.





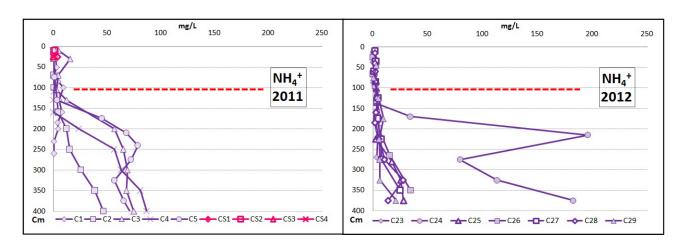
Sistema drenante del campo sperimentale

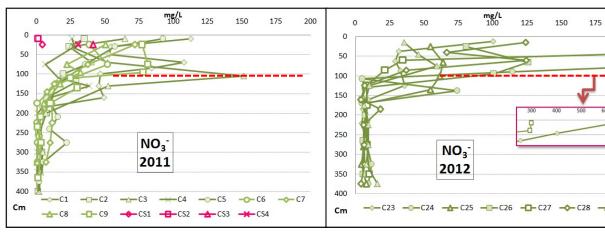
16 dreni sud, 12 dreni nord

In ciascuna parcella il dreno centrale viene captato per conteggio dei litri di acqua immessi nelle scoline; periodicamente viene determinato il chimismo delle acque.

Stazione di monitoraggio in continuo (Canale Acque Basse)

Prelievo dell'acqua di falda dai piezometri

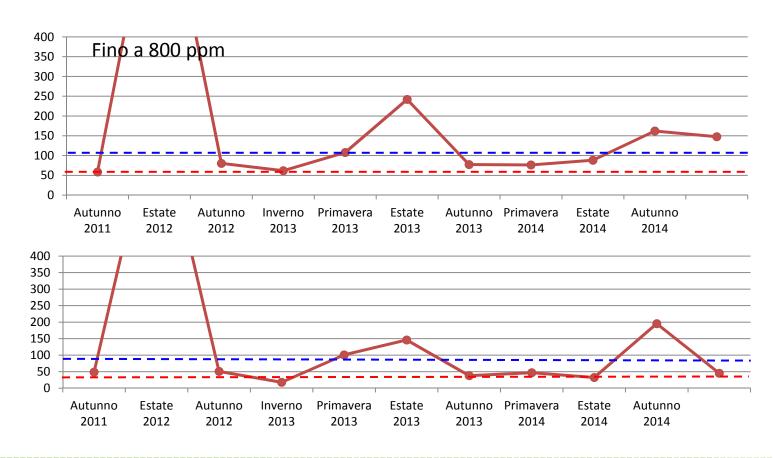




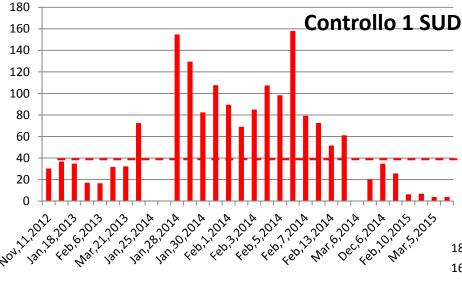
Distribuzione verticale di Ammonio e Nitrati del porewater

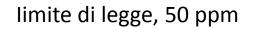
Livello dei dreni

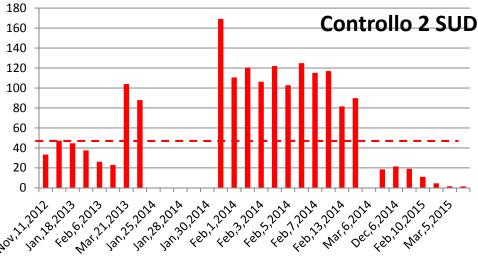
- Suolo a bassa permeabilità
- Nitrati lisciviati per ruscellamento superficiale o dal sistema drenante
- Ammonio in profondità di origine naturale



Concentrazione di Nitrati nell'acqua interstiziale nei primi 100 cm di suolo in alcune parcelle di controllo

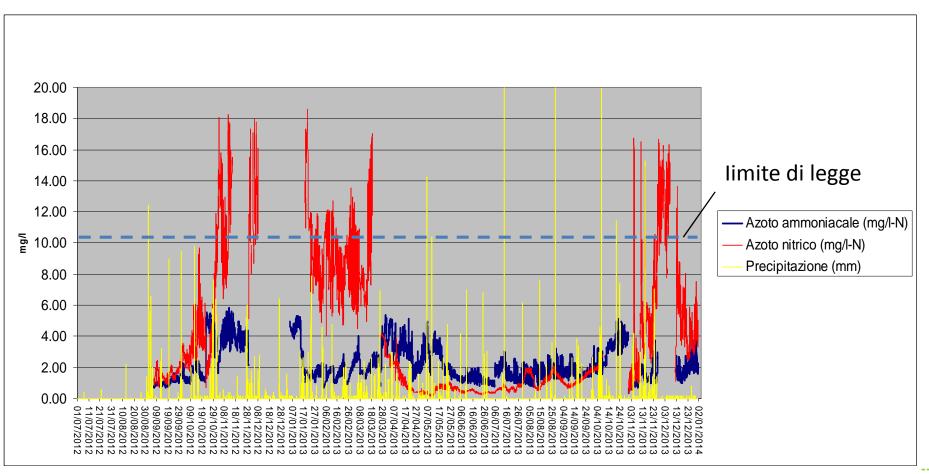




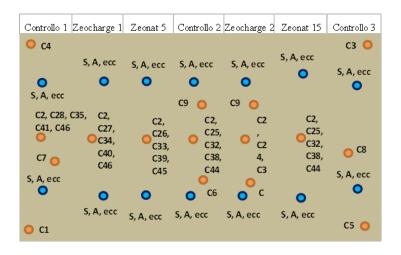


Concentrazione di Nitrati nell'acqua in uscita dai dreni dal 2012 a oggi

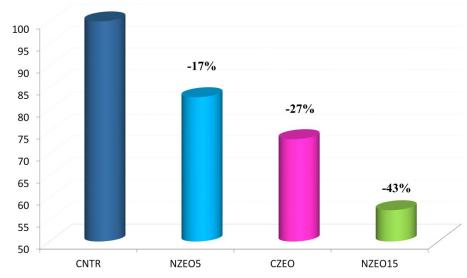
limite di legge, 50 ppm



CAMPIONAMENTO ACQUE BASSE, SONDA IN CONTINUO 2012-2013

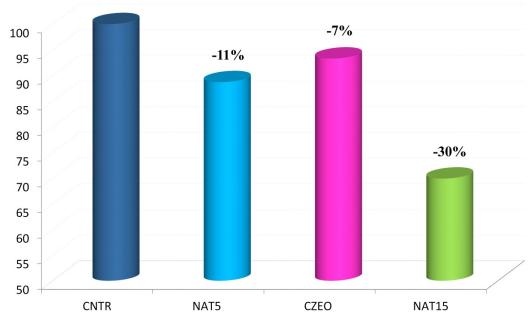


Nitrato nell'acqua interstiziale


La concentrazione di nitrato nell'acqua interstiziale del suolo del campo è mediamente inferiore (tra il 17 e il 43%) in tutte le parcelle trattate con zeolitite. I risultati sono relativi ai tre anni di coltivazione sperimentale.

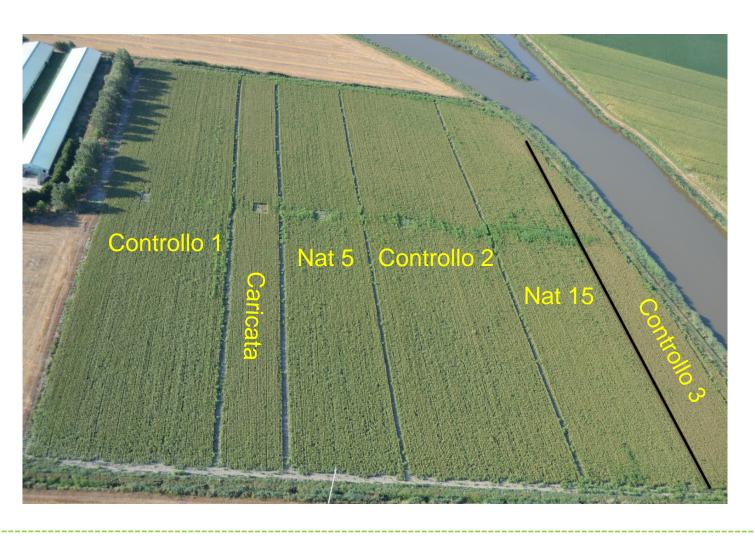
Average EC: 3 mS/cm
Ammonio sotto detection limit

Novembre 2012 – Luglio 2015


Nitrato in uscita dai dreni

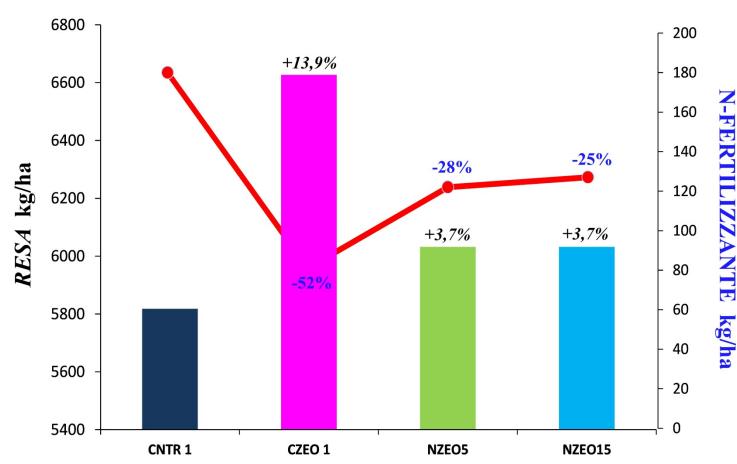
La concentrazione di nitrato nell'acqua in uscita dai dreni del campo è mediamente inferiore (tra il 7 e il 30 %) in tutte le parcelle trattate con zeolitite. I risultati sono relativi ai tre anni di coltivazione sperimentale.

Novembre 2012 – Marzo 2015



Campo sperimentale 10 Agosto 2013

SORGO

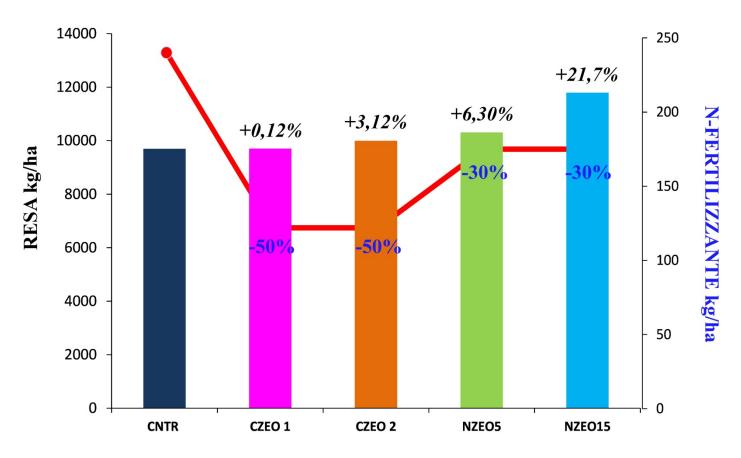


Anno agronomico 2013

Campo sperimentale 6 Sett 2014

(un giorno prima del raccolto)

MAIS



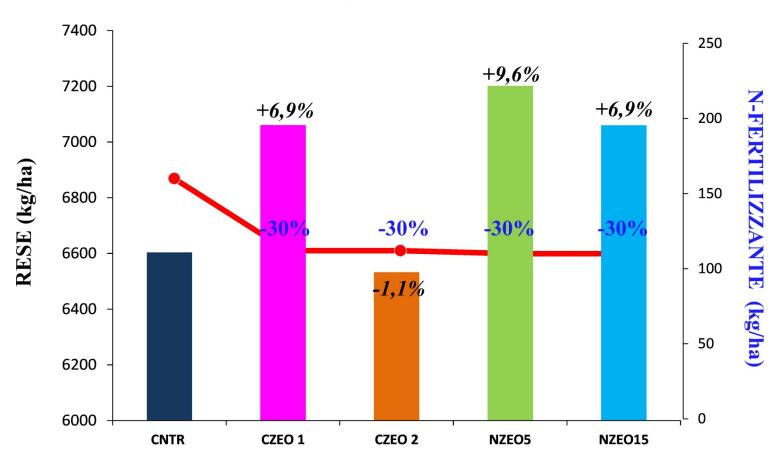
MAIS

Anno agronomico 2014

Campo sperimentale 31 Luglio 2015

(un giorno prima del raccolto)

GRANO



Anno agronomico 2015

Il miracolo del paradosso

ricerca&innovazione

Il miracolo del paradosso

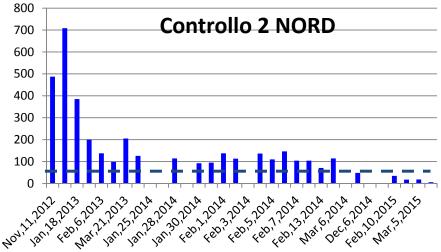
Suoli più produttivi riducendo la fertilizzazione

Ttilizzare una roccia vulcanica ricca di minerali, per ridurre lo spreco di acqua in agricoltura, diminuire l'inquinamento e migliorare le caratteristiche chimico-fisiche dei terreni. È la sfida del progetto ZeoLIFE (www.zeolife.it), finanziato al 50% dalla Comunità Europea e guidato dal Dipartimento di Fisica e Scienze della Terra dell'Università di Ferrara. Un percorso iniziato a settembre 2011, su un campo sperimentale di 6 ha presso Codigoro (Fe), opportunamente suddiviso in sei particelle (vedi figura) e che ora, alle porte di Expo 2015, taglia il traguardo con un bagaglio di risultati che ne rendono possibile l'applicazione su larga scala. La roccia è la zeolitite che, arricchita in azoto mediante un particolare trattamento con liquame suino, e sparsa in giusta quantità nei campi agricoli, agisce come un ammendante a lento rilascio. Non risente del dilavamento delle piogge, cede i nutrienti solo a contatto con le radici delle piante, ed evita la dispersione dell'azoto nel sistema idrico sotterraneo e superficiale. Dopo due anni di sperimentazione agronomica, nei campi dove è stato coltivato mais e sorgo, l'impiego di fertilizzanti tradizionali è stato ridotto tra il 30 e 50%, a fronte di un incremento della produzione registrato dal 5 al 20%. È il "miracolo del paradosso, riducendo l'uso dei fertilizzanti è

aumentata la resa produttiva", spiega il referente del progetto, Massimo Coltorti. L'aggiunta viene fatta una sola volta e si configura come un miglioramento fondiario perenne. Contemporaneamente si è ridotto il carico inquinante dei reflui zootecnici evitando anche la dispersione di gas climalteranti. Una rivoluzione, se si pensa che la Provincia di Ferrara è stata dichiarata vulnerabile ai nitrati, ed è sotto la lente dell'Unione Europea: "Ne abbiamo verificato una riduzione fino al 48% e, di fatto, abbiamo un'acqua meno inquinata".

LIFE+ Environmental Policy and Governance 2010

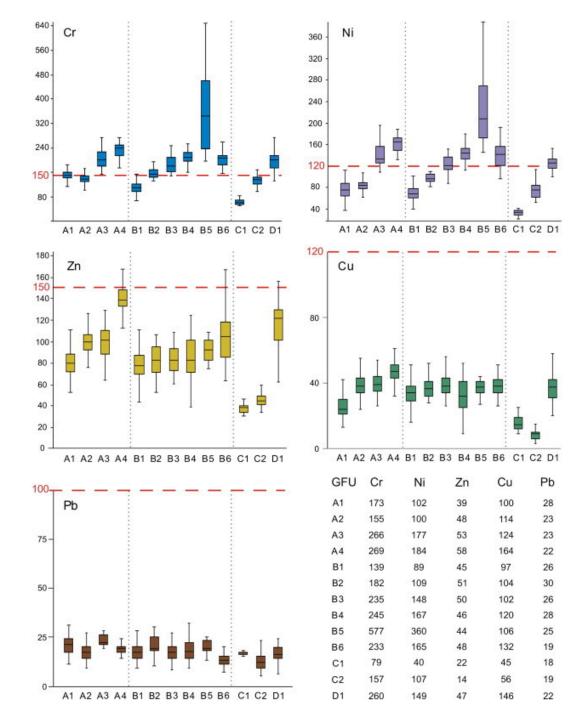
LIFE+10 ENV/IT/00321



Concentrazione di Nitrati nell'acqua in uscita dai dreni dal 2012 a oggi

limite di legge, 50 ppm

limite di legge, 50 ppm



La composizione dei suoli, tra natura ed intervento antropico

Gli altri usi del suolo....

 viene utilizzato per smaltire i reflui zootecnici (Suini, Ovini, Bovini e Avicoli) che prima dei fertilizzanti chimici erano la principale risorsa di azoto (da qui l'idea del prototipo sperimentale)

- in questa ottica il suolo agricolo viene anche usato come necessità «secondaria» rispetto alla produzione di mangime per animali, dato che il suolo potrebbe non avere

MANUAL MANUAL PROPERTY OF THE PROPERTY OF THE PARTY OF TH

necessità di ulteriori apporti azotati

Ma ormai anche per scopi energetici sia per centrali a biogas che per insediamenti di pannelli fotovoltaici

 Le centrali a biogas in particolare hanno un grande bisogno di terra, sia per la coltivazione del materiale che serve ad alimentarle, sia per lo smaltimento dello scarto di produzione, il famoso «digestato».

Squilibri antropici....

il grano duro è pagato mediamente 16 euro a quintale; Da un ettaro di terreno si ricavano in media 30 quintali di grano, pari a circa 480 euro;

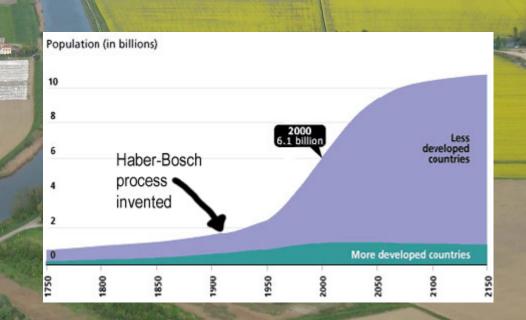
Il consumo del suolo in Italia...

Superficie di suolo consumata pro-capite (m2/ab) per anno. Fonte ISPRA 2015

Anni 50	1989	1996	1998	2006	2008	2013	2014
167	270	301	309	334	338	349	345

ca. 1 m² al giorno per ciascuno di noi

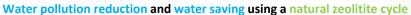
Considerando 60 Mil di abitanti


Considerando 60 Mil di m² ovvero 6.000 ha

La resa per ettaro può variare sensibilmente in dipendenza di diversi fattori tra cui principalmente l'andamento climatico stagionale e la rotazione colturale effettuata. In media la resa è 25-90 q/ha per il grano tenero, 15-50 q/ha per il grano duro.

, Ad una media di 30q/ha Perdiamo 30*6.000 = 180.000q, 18.000 ton di grano al giorno

L'espansione demografica


L'espansione demografica dagli inizi del 1900 (meno di 2 miliardi) ad oggi (più di 6 miliardi) non sarebbe stata possibile senza la scoperta di questo processo che ha sostanzialmente consentito la massiccia produzione di fertilizzanti azotati e di conseguenza di aumentare notevolmente il rendimento di un ettaro di terra

Quindi, in teoria, un uso più efficiente del suolo
Ovvero una maggiore produzione con minor uso di suolo per far fronte anche
alle sfide della sovrappopolazione

Addizione zeolitite arricchita in NH₄ in taglia grossolana (3-6 mm) in una nuova parcella

Novembre 2013

SECONDO ANNO DI COLTIVAZIONE SPERIMENTALE

Semina Mais 28 Marzo 2014

LIFE+ Environmental Policy and Governance 2010

LIFE+10 ENV/IT/00321

Water pollution reduction and water saving using a natural zeolitite cycle

					Our attable di fantilia							Resa per ha misurati da trattore	
Mais			Liquam	e	Quantità di fertilizzante			2° Concimazione prevista			Resa q	q/ha	resa
240	Kg/ha	/ha 14 viaggi	140g ciascuno		SEMINA	Fosfato biammonico 18N	1.5	Azoto ke					
Area (m2)		su tutto il	campo cor	npre sa l'orecchia	27	Kg N/ha		Rimane					
1° Parcella - 54 m	Contro	ollo		Tot Kg N	Tot Kg N	Kg tot Fosfato		Kg N residui	Kg tot Urea	% riduzione			
15120	362.9			60.31	40.82	226.8		261.75	569		140	94.86	
	unità di N	totali (100	9%)										
2° Parcella - 18 m	Zeoliti	te Cari	icata 1	$1_{ m kg/m^2}$					Г		<u> </u>	Г	
	60.48			20.10	13.61	75.6		26.77	58	46.5%	53	97.09	0.12%
	unità di N	(50%)											
3° Parcella - 36 m	Zeoliti	te Nat	urale 5	kg/m ²									
10080	169.3 unità di N	(30%)		40.21	27.22	151.2		101.92	222	21.8%	.00	103.09	6.30%
40.0	Contro	allo											
4° Parcella - 40 m	268.8	110		44.67	20.24	100		103.80	424		122	107.73	
11200	unità di N	(100%)		44.67	30.24	168		193.89	421		123	107.72	
14 m	Zeoliti	te Cari	icata gi	rossolana 5	Okg/m ²								
3920	47.04			15.61	10.58	58.8		20.82	45	46.6%	43	100	3.12%
	7.01:4:	to Net		F 2									
5° Parcella - 36 m		те мат	urale 1							22 20/			24 70
10080	unità di N	(20%)		40.21	27.22	151.2		101.92	222	23.3%	.09	118.04	21.79
6° Parcella (base 42m)	Triano	olo Co	ntrollo)									
o: Parcella (base 42m)	187.2	,010 00	, i i ci o i i c	,									

Su tutte le parcelle con zeolitite → Riduzione del 55% dell'irrigazione

LIFE+ Environmental Policy and Governance 2010

LIFE+10 ENV/IT/00321

Water pollution reduction and water saving using a natural zeolitite cycle

Dose		Quantità di	Riduz	ione		Raccolto				
190	Kg/ha	SEMINA	Fosfato biammo nico 18N				Sorgo			
Area (m2)		21,6	Kg N/ha				Raccolto			
1° Parcella - 54 m	Controllo	Kg N tot	Kg tot	Totali	x ha		kg	kg/ha	Kg	
15120	287,3 unità di N (100%)	32,66	181,44	265	175	170	8700	5754	5818	media con
2° Parcella - 18 m	Zeolitite Ca	ricata 7kg/m	2							
5040	47,88 unità di N (50%)	10,89	60,48	41	81	52%	3340	6627	6627	13,9%
3° Parcella - 36 m	1	aturale 5kg/m	12							
1008	153,2 unità di N (20%)	21,77	120,96	123	122	28%	6080	6032	6032	3,7%
4° Parcella - 54 m	Controllo									
15120	287,3 unità di N (100%)	32,66	181,44	276	183		9900	6548		
5° Parcella - 36 m	Zeolitite Na	aturale 15kg/	m2							
10080	153,2 unità di N (20%)	21,//	120,96	128	127	25%	6080 su 110	0 m 6032	6032	3,7%
6° Parcella (base 42m)	Triangolo C	Controllo								
7800	148,2 unità di N (100%)	16,85	93,6	118	151		4020 su 780	Om 5154		

Aggiunta di zeolitite

